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Problem

Statement of the problem

Let us consider market with following investment opportunities:
1 d- Stocks with price process denoted by S.
2 Bank account denoted by B.

Suppose that investor just sold contract for delivering cashflows
according to the process D Investor is interested in hedging of D

Example (Call option)

Dt = 1{t≥T}(ST − K )+
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Problem

Example (Vulnerable Call option)

Let τ be a default time of the corporate. Suppose that (ST − K )+ is
paid at maturity provided that τ > T .

Dt = 1{t≥T}(ST − K )+1{τ>T}

Example (Vulnerable Call option with recovery)
1 (ST − K )+ is paid at the maturity of the option contract provided

that the stock did not defaulted by T i.e. τ > T .
2 fixed fraction δ ∈ [0,1] of intrinsic value of the option is paid at the

default time τ

Dt = 1{t≥T}(ST − K )+1{τ>T} + δ(Sτ− − K )+1{τ≤t}
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Problem

Example
Suppose that there is additional source of uncertainty i.e. process C
taking values in a finite set K = {1, . . . ,K} which can be interpreted as
credit rating of some corporate or as state of economy. For each i ∈ K
we define the processes

H i
t := 1{i}(Ct )

H i,j
t :=

∑
0<u≤t

H i
u−H j

u

Dt = 1{t≥T}h(ST ,CT ) +

∫ t

0
g(Su,Cu)du +

∑
i,j∈K,i 6=j

δi,j(Su−)dH i,j
u
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Hedging

Hedge dividend stream ?

1 Perfect replication of dividend stream: self-financing strategy
ϕ = (φ, η) such that

DT − Dt = Vt (ϕ) +

∫ T

t
φudSu +

∫ T

t
ηudBu

or in discounted terms

D∗T − D∗t :=

∫ T

t
B−1

u dDu = Vt (ϕ) +

∫ T

t
φudS∗u

2 Mean-variance hedging - minimize distance between the payoff
and the gains from strategy (see Schweizer).

3 Risk/local-risk minimization - minimize at the risk measured by
conditional second moment of remaining cost see Föllmer and
Sonderman (1986) or Schweizer (2008). Replication is perfect but
the strategy is not self-financing !
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Local risk minimization

Definition
Fix a payment stream D. The (cumulative) discounted cost process of
an L2 strategy ϕ = (φ, η) is

CD
t (ϕ) := D∗t + V ∗t (ϕ)−

∫ t

0
φsdS∗s , 0 ≤ t ≤ T .

Definition

L2 strategy ϕ is called self-financing for D if CD(ϕ) is constant, and
mean self-financing if CD(ϕ) is martingale (square integrable)

Definition
The risk process of ϕ is

RD
t := E

((
CD

T (ϕ)− CD
t (ϕ)

)2
|Ft

)
, 0 ≤ t ≤ T .
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Local risk minimization

Assume that discounted prices are given by a Rd valued cadlag
semimartingale.

Definition
We say that S∗ satisfies structure condition (SC) if

1 S∗ is special with canonical decomposition S∗ = S∗0 + M + A
where M ∈M2

0,loc

2 There exists Rd valued stochastic process a s.t.

At =

∫ t

0
d〈M〉sas

where λ is predictable and in L2
loc(M) i.e.∫ T

0
a>s d〈M〉sas <∞ P− a.s.
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Local risk minimization

Definition

The space ΘS consist of all Rd valued predictable stochastic process φ
s.t. the stochastic stochastic integral

∫
φdS∗ is well defined and in

space S2(P) of semimartingales. This means that

E

∫ T

0
φ>s d〈M〉sφs +

(∫ T

0
|φsdAs|

)2
 <∞

Definition

An L2 strategy is a pair ϕ = (φ, η) where φ ∈ ΘS and η is real-valued
adapted process s.t. V ∗(ϕ) := φ>S∗ + η is right-continuous square
integrable i.e. V ∗t (ϕ) ∈ L2(P). If VT (ϕ) = 0 P− a.s. then we say that ϕ
is 0-achieving.
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An L2 strategy is a pair ϕ = (φ, η) where φ ∈ ΘS and η is real-valued
adapted process s.t. V ∗(ϕ) := φ>S∗ + η is right-continuous square
integrable i.e. V ∗t (ϕ) ∈ L2(P). If VT (ϕ) = 0 P− a.s. then we say that ϕ
is 0-achieving.
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Local risk minimization BSDE

Characterization of locally risk minimization strategies
for dividend

Theorem (Schweizer (2009))

Suppose the Rd–valued semimartingale S∗ satisfies structure
condition (SC) and let D be a payment stream. If the mean-variance
trade-off process

Kt =

∫ t

0
α>u d〈M〉uαu

is continuous, the following conditions are equivalent for an L2 strategy
ϕ:

1 ϕ is locally risk-minimizing for D.
2 ϕ is 0-achieving and mean-self-financing, and the cost process

CD(ϕ) is strongly orthogonal to M.
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Local risk minimization BSDE

Föllmer-Schweizer decomposition of random variable
Y

Definition

An FT measurable random variable Y ∈ L2 admits a
Föllmer-Schweizer decomposition if it can be written as

Y = Y (0) +

∫ T

0
φY

s dS∗s + LY
T P− a.s.

where Y (0) ∈ L2 is F0–measurable, φY ∈ ΘS, and the process LY is a
(right-continuous) square integrable martingale null at zero and
strongly orthogonal to M.

Remark
If S∗ is a square integrable martingale then Föllmer-Schweizer
decomposition is a Galtchouk-Kunita-Watanabe decomposition.
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Local risk minimization BSDE

Föllmer-Schweizer decomposition and locally risk
minimization strategies

Theorem (Schweizer (2009))

Suppose the Rd–valued semimartingale S∗ satisfies (SC) and the
process K is continuous. Then a payment stream D admits a locally
risk-minimizing L2 strategy ϕ if and only if D∗T admits a
Föllmer-Schweizer decomposition. In that case ϕ = (φ, η) is given by

φ = φD∗
T , η = V ∗ − (φD∗

T )>S∗

with
V ∗t := D∗(0)T +

∫
]0,t]

φ
D∗

T
s dS∗s + LD∗

T
t − D∗t , 0 ≤ t ≤ T ,

and then
CD

t (ϕ) = D∗(0)T + LD∗
T

t , 0 ≤ t ≤ T .
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Local risk minimization BSDE

Market model

Money market account satisfies

dBt = Bt rtdt , B0 = 1.

where r is bounded progressively measurable stochastic process. The
dynamics of discounted price process S∗t := St/Bt is given by

dS∗t = µtdt + σtdWt +

∫
Rn

Ft (x)Π̃(dx ,dt) +
∑

i,j∈K,j 6=i

ρi,j
t dM i,j

t , S∗0 = s.

W is an n dimensional Wiener process,
by Π̃ we denote

Π̃(dx ,du) := Π(dx ,du)− νu(dx)du,

where Π(dx ,dt) is assumed to be an integer valued random measure
on B(Rn)⊗ B(R+) with compensator νu(dx)du
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Local risk minimization BSDE

Processes M i,j are driven by an additional source of uncertainty i.e. by
a càdlàg process C taking values in a finite set K = {1, . . . ,K} which
can be interpreted as credit rating of some corporate or as state of
economy. For each i ∈ K we define the processes

H i
t := 1{i}(Ct )

H i,j
t :=

∑
0<u≤t

H i
u−H j

u

We make the standing assumptions:
Assumption EoI. There exist nonnegative bounded processes λi,j ,
i , j ∈ K, j 6= i , such that processes M i,j defined by

M i,j
t = H i,j

t −
∫
]0,t]

H i
u−λ

i,j
u du (1)

are martingales.
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u−H j

u

We make the standing assumptions:
Assumption EoI. There exist nonnegative bounded processes λi,j ,
i , j ∈ K, j 6= i , such that processes M i,j defined by

M i,j
t = H i,j

t −
∫
]0,t]

H i
u−λ

i,j
u du (1)

are martingales.
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Local risk minimization BSDE

Definition

We say that (W , Π̃, M) has a weak property of predictable
representation with respect to (F,P) if every square integrable
(F,P)-martingale N has the representation

Nt = N0 +

∫ t

0
φudWu +

∫ t

0

∫
Rn
ψu(x)Π̃(du,dx) +

∫ t

0

∑
i,j∈K:j 6=i

ξi,j
u dM i,j

u ,

where φu, ψu(x), ξi,j
u are predictable processes such that

E

(∫ T

0
|φu|2du

)
<∞, E

(∫ T

0

∫
Rn
|ψu(x)|2νu(dx)du

)
<∞,

E

(∫ T

0
|ξi,j

u |2λ
i,j
u du

)
<∞ i , j ∈ K, i 6= j .
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Local risk minimization BSDE

Assumption INT. The processes µi are predictable with values in the
space of vectors of dimension d , σi are predictable with values in the
space of matrices of dimension d × n and ρi,j are predictable
processes with values in the space of vectors of dimension d satisfying∫ T∗

0

‖σt‖2+
∫

Rn
‖Ft (x)‖2 νt (dx) +

∑
i,j∈K:j 6=i

∥∥∥ρi,j
t

∥∥∥2
H i

t−λ
i,j
t + ‖µt‖

dt <∞.

Assumption INT implies that S∗ is a special semimartingale with
canonical decomposition given

At =

∫ t

0
µudu,

Mt =

∫ t

0
σudWu +

∫
Rn

Fu(x)Π̃(dx ,du) +
∑

i,j∈K,j 6=i

ρi,j
u dM i,j

u .

where M is such that M ∈M2
0,loc
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Local risk minimization BSDE

For convenience we denote by G the matrix valued stochastic process

Gt := σt (σt )
> +

∫
Rd

Ft (x)(Ft (x))>νt (dx) +
∑

i,j∈K:j 6=i

ρi,j
t

(
ρi,j

t

)>
H i

t−λ
i,j
t .

(SC) condition in this case means that µt ∈ Im(Gt ) so that we can write

At =

∫ t

0
d〈M〉uau =

∫ t

0
Guaudu,

for some predictable processes a e.g. we can take a

at = G−1
t µt

where −1 denotes Moore-Penrose pseudo inverse.
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Local risk minimization BSDE

Suppose that we have contract with dividends described by following
integral equation

Dt = D0 + 1t≥T hD
T +

∫ t

0
gD

u du +

∫ t

0
(δD

u )>dWu

+

∫ t

0

∫
Rd

JD
u (x)Π̃(du,dx) +

∫ t

0

∑
i,j:j 6=i

γD,i,j
u dM i,j

u

and let us define

At (δ, J, γ) :=

σtδ +

∫
Rn

Ft (x)J(x)νt (dx) +
∑

j,i∈K,j 6=i

ρi,j
t γ

i,jλi,j
t


D∗t :=

∫ t

0

1
Bu

dDu
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Local risk minimization BSDE

Theorem

Suppose that (V , δV , JV , γV ) is a solution to following BSDE

Vt = hT +

∫ T

t
gD

u − au
>Au(δV

u + δD
u , J

V
u + JD

u , γ
V
u + γD

u )− Vurudu

−
∫ T

t
(δV

u )>dWu −
∫ T

t

∫
Rn

JV
u (x)Π̃(dx ,du)−

∫ T

t

∑
j,i∈K,j 6=i

γV ,i,j
u dM i,j

u

then (V0, φ,L) is a Fölmer-Schweizer decomposition of random
variable D∗T , where
1) φ solves following system of linear equations

Gtφt = Au(δV
u + δD

u , J
V
u + JD

u , γ
V
u + γD

u )

2) L is given

Lt =
Vt

Bt
− V0 −

∫ t

0
φudS∗u − D∗t
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u , γ
V
u + γD

u )− Vurudu

−
∫ T

t
(δV

u )>dWu −
∫ T

t

∫
Rn

JV
u (x)Π̃(dx ,du)−

∫ T

t

∑
j,i∈K,j 6=i

γV ,i,j
u dM i,j

u

then (V0, φ,L) is a Fölmer-Schweizer decomposition of random
variable D∗T , where
1) φ solves following system of linear equations

Gtφt = Au(δV
u + δD

u , J
V
u + JD

u , γ
V
u + γD

u )

2) L is given

Lt =
Vt

Bt
− V0 −

∫ t

0
φudS∗u − D∗t
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Local risk minimization BSDE

Remark
First component of solution to BSDE is a value process of locally
risk-minimizing strategy.

Remark
The martingale L in FS decomposition can be written explicitly

dLt =
(

(δV
t + δD

t )> − φ>t σt

)
dWt

+

∫
Rn

(
(JV

t + JD
t )(x)− φ>t Ft (x)

)
Π̃(dt ,dx)

+
∑

i,j∈K:j 6=i

(
(γV ,i,j

t + γD,i,j
t )− φ>t ρ

i,j
t

)
dM i,j

t
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Explicit form of the solution

Proposition

Let (P t
s)s≥t , (Z t

s)s≥t be solution to forward SDE

dP t
s = −P t

sa>s

(
σsdWs +

∫
Rn

Fs(x)Π̃(ds,dx) +
∑

i,j:j 6=i

ρi,j
s dM i,j

s

)
, P t

t = 1.

dZ t
s = −Z t

srsds, Z t
t = 1.

For every t ∈ [[t ,T ]] we have

Vt = E
(

P t
T Z t

T hD
T +

∫ T

t
P t

sZ t
s
(
gD

s − a>s As(δD, JD, γD)
)
ds|Ft

)

M. Nieweglowski (MiNI PW,IIT) Local risk minimization and BSDE 14 June, 2013 21 / 28



Local risk minimization BSDE

Explicit form of the solution

Proposition

Let (P t
s)s≥t , (Z t

s)s≥t be solution to forward SDE

dP t
s = −P t

sa>s

(
σsdWs +

∫
Rn

Fs(x)Π̃(ds,dx) +
∑

i,j:j 6=i

ρi,j
s dM i,j

s

)
, P t

t = 1.

dZ t
s = −Z t

srsds, Z t
t = 1.

For every t ∈ [[t ,T ]] we have

Vt = E
(

P t
T Z t

T hD
T +

∫ T

t
P t

sZ t
s
(
gD

s − a>s As(δD, JD, γD)
)
ds|Ft

)

M. Nieweglowski (MiNI PW,IIT) Local risk minimization and BSDE 14 June, 2013 21 / 28



Local risk minimization BSDE

Explicit form of the solution

Proposition

Let (P t
s)s≥t , (Z t

s)s≥t be solution to forward SDE

dP t
s = −P t

sa>s

(
σsdWs +

∫
Rn

Fs(x)Π̃(ds,dx) +
∑

i,j:j 6=i

ρi,j
s dM i,j

s

)
, P t

t = 1.

dZ t
s = −Z t

srsds, Z t
t = 1.

For every t ∈ [[t ,T ]] we have

Vt = E
(

P t
T Z t

T hD
T +

∫ T

t
P t

sZ t
s
(
gD

s − a>s As(δD, JD, γD)
)
ds|Ft

)

M. Nieweglowski (MiNI PW,IIT) Local risk minimization and BSDE 14 June, 2013 21 / 28



Local risk minimization BSDE

Explicit form of the solution

Proposition

Let (P t
s)s≥t , (Z t

s)s≥t be solution to forward SDE

dP t
s = −P t

sa>s

(
σsdWs +

∫
Rn

Fs(x)Π̃(ds,dx) +
∑

i,j:j 6=i

ρi,j
s dM i,j

s

)
, P t

t = 1.

dZ t
s = −Z t

srsds, Z t
t = 1.

For every t ∈ [[t ,T ]] we have

Vt = E
(

P t
T Z t

T hD
T +

∫ T

t
P t

sZ t
s
(
gD

s − a>s As(δD, JD, γD)
)
ds|Ft

)

M. Nieweglowski (MiNI PW,IIT) Local risk minimization and BSDE 14 June, 2013 21 / 28



Local risk minimization BSDE

Interpretation of the solution

If P0 is a positive martingale, then

Vt = BtEQ

(
hD

T
BT

+

∫ T

t

1
Bs

(
gD

s − a>s As(δD, JD, γD)
)
ds|Ft

)
where Q is an equivalent probability measure

dQ
dP
|FT = P0

T

In fact SC condition implies that Q is then a equivalent martingale
measure which is known as minimal martingale measure.
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Local risk minimization BSDE

Lemma

Suppose that P0 is nonegative. Let Q be a measure with density given
by P0, then

1 The process WQ defined by

WQ
t = Wt +

∫ t

0
θQu du

is Q Brownian motion, where θQu := (σu)>αu.

2 Integer valued random measure Π has Q-compensator with
density given by νQt (dx) = (1− αt

>Ft (x))νt (dx) i.e. random
measure Π̃Q defined by

Π̃Q(dx ,du) := Π(dx ,du)− (1− αu
>Fu(x))νu(dx)du,

is Q compensated random measure.
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Local risk minimization BSDE

Lemma (cont.)

1 For every i , j ∈ K, i 6= j processes

λQ,i,jt = (1− αt
>ρi,j

t )λi,j
t

are intensities of processes H i,j i.e. the processes

MQ,i,j
t := H i,j

t −
∫ t

0
H i

u−λ
Q,i,j
u du

are Q local martingales.
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Local risk minimization BSDE

One may expect that following version of risk neutral valuation formula
holds

Vt = BtEQ

(∫ T

t

1
Bs

dDs|Ft

)
Consider special example of dividend process

Dt = hD
T1t≥T +

∫ t

0
gudu +

∫ t

0

∑
i,j:j 6=i

γD,i,j
u dH i,j

u

It is special semimartingale with canonical decomposition given by

Dt = hT1t≥T +

∫ t

0

gu +
∑

i,j:j 6=i

γD,i,j
u λi,j

u

du +

∫ t

0

∑
i,j:j 6=i

γD,i,j
u dM i,j

u
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Thus we obtain

Vt = EQ

(
Z t

T hD
T +

∫ T

t
Z t

u

(
gu +

∑
i,j:j 6=i

γD,i,j
u λi,j

u (1− a>u ρ
i,j
u )︸ ︷︷ ︸

=λQ,i,j
u

)
du|Ft

)

= BtEQ

(∫ T

t

1
Bs

dDs|Ft

)
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